

Overview 2

Introduction to Containers 3
Runtime Environments 4
Images 4
Registries 5

Introduction to Kubernetes 8
Architecture 8
Concepts & Terms 9

Nodes 9
Control Plane Nodes 9
Compute / Worker Nodes 10
Infrastructure Nodes (Optional) 10

Pods 10
Deployments 11
ReplicaSets 12
Services 12

Containerized Workload Scheduling 14
Kubernetes Scheduling Basics 14

Taints & Tolerations 14
Resource Requests & Limits 15
Affinity & Anti-Affinity Constraints 16
Liveliness & Readiness Probes 19

Workload Lifecycle & Redeployments 20

Workloads on Kubernetes vs Traditional VMs 22
Case Example: Web Applications deployed on VMs vs Kubernetes 22
Good Fit vs Bad Fit Use Cases 24

Building Applications to Survive Chaos 25

Cross Team Collaboration Needs 26
Case Example: Automated Pipeline Took Multiple Nodes Offline 26
Risks and Responsibilities of Team Members 27

Overview
This guide serves to provide readers with Shadow-Soft’s introduction to containers
and Kubernetes. The intention of this guide is to highlight and establish core
concepts, roles, responsibilities and design paradigms used in container
orchestration environments. Having a full understanding of the operating
environment and how workloads are scheduled compared to traditional
infrastructure is crucial to ensuring software is developed, deployed and managed
correctly. By providing real-world situational examples and use cases, readers will
avoid common pitfalls and be set up for long term success.

Introduction to Containers
Containers are singular instances of an isolated executable process (ex. an instance
of HTTPD, MariaDB, etc) running on a Linux-based host operating system. These
processes (and all their underlying required packages) are bundled together in an
easy to manage and archivable format so it can be deployed between disparate
systems. This idea isn’t ground breaking or new and has existed under different
names (i.e. Solaris Zones) for many years. However, it wasn’t until the Docker
container runtime system was released in 2013 that containers became manageable
enough for practical usage.

Unlike virtual machines, containers are built at the process-level. Virtual machines
can be large, cumbersome and take a long time to execute in a rapid fashion;
additionally, they require the overhead of a virtual hypervisor to emulate and isolate
virtual machine instances from one another. Containers instead require only a
shared linux kernel and a OCI compliant runtime (i.e. CRI-O, Docker, etc) to run the
process on top of the underlying operating system. The isolation is then applied via
the usage of Linux Namespaces and CGroups.

The process of managing and deploying containers has been standardized over the
last several years making it safe, consistent and easy to use. Regarding the usage of
Containers, three main concepts need to be understood.

● Runtime Environments
● Images
● Registries

Runtime Environments

Containers currently require Linux based operating systems to provide the
necessary functionality for process isolation to be possible. To simplify the process
of managing multiple isolated processes on a given host, Docker was created.
Docker’s main purpose initially was to provide the ability to create, run, retrieve and
manage container images on a given local system.

Example Docker Commands

docker build /location/of/image/content/ -t helloworld:v1
docker run helloworld:v1 –name helloworld
docker stop helloworld
docker start helloworld
docker rm helloworld

Eventually the image format and runtime were standardized creating the
emergence of multiple easy-to-use implementations for container engines (i.e.
Docker, Podman, CRI-O, etc).

Images
Container images are tar files bundled with an associated JSON file that is many
times referred to as an Image Bundle. This image contains the running process, all of
the required installed packages and any needed configuration details in a
standardized OCI format. This format allows for containers to be easily ported
across various systems regardless of the container runtime implementation (i.e.
Docker, CRI-O, RKT, etc).

These images are portable to various distributions of Linux including Fedora, Debian,
RHEL, CentOS, SUSE, etc. The only caveat to portability is the expected underlying
linux kernel and system architecture. All container images require the running host
to provide a compatible kernel (for API purposes) and system architecture (i.e.
x64/x86, ARM, Power, etc). If the Linux kernel version variance is too great and/or
the system architecture is not the same, the container image will not run in the
target environment.

Despite this, it is important to be aware of the vendor supportability regarding image
compilation and target environment. For example, Red Hat supports RHEL 6, UBI 7,
and UBI 8 container images on both RHEL 7 and RHEL 8 container hosts (CoreOS is
built from RHEL bits). Red Hat cannot guarantee that every permutation of a
container image and host combination that exists will work. The same applies to any
major vendor and should be considered when determining build and target running
environments should supportability and security be concerned.

Building an image can be performed in various ways depending on your tool of
choice. Most end-users leverage Docker to build container images by constructing
a Dockerfile instance consisting of the instructions which will be used to construct
the image.

Example Dockerfile

vi /location/of/image/content/Dockerfile
FROM node:12-alpine
RUN apk add --no-cache python2 g++ make
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

Once a Dockerfile instance has been created, a single command is run to build and
tag the corresponding image as is depicted below:

Example Docker Commands

docker build /location/of/image/content/ -t helloworld:v1

Registries
Container registries are standardized file servers that are designed to host and
distribute container images across various systems. The registries offer the ability
for end-users to authenticate to, authorize, upload, tag, and download images.

Many public registries exist from various product companies to host curated &
standardized supported images of content provided by the given vendor (ex. Red
Hat Container Catalog) . Additionally, multiple registries offerings exist privately
and/or public host an users own container images (ex. Docker Hub). Curated
registries are good for partners who want to deliver solutions together, while
cloud-based registries are good for end users collaborating on work.

An instance of a container registry can be created by installing a series of software
packages on a hosted system or by creating an account with a cloud hosting
provider (ex. DockerHub).

Once a target registry has been selected and a container image has been locally
created, it can be tagged for, uploaded to and downloaded from the given registry.

Example Docker Commands

docker login registry-1.docker.io
docker image tag helloworld:v1 registry-1.docker.io/myadmin/helloworld:v1
docker image push registry-1.docker.io/myadmin/helloworld:v1

After a image has been uploaded to a given registry it can be downloaded by any
container runtime that is compatible with the given image:

Example Podman & Docker Commands

docker pull registry-1.docker.io/myadmin/helloworld:v1
podman pull registry-1.docker.io/myadmin/helloworld:v1

Introduction to Kubernetes
Despite containers providing a lightweight and highly distributable means of
packaging and running workloads on individual systems, container runtimes (i.e.
Docker, LXC, Podman, etc) by themselves lack the additional capabilities necessary
to orchestrate workloads across various interconnected systems. These missing
capabilities include virtual networking, storage coordination, remote management,
and scheduling of workloads across various systems while maintaining operational
awareness and interconnected system dependency management.

This need warranted the creation of various orchestration platforms over time
including Kubernetes, Mesosphere, Docker Swarm and many home-grown
solutions. Founded by Google and maintained by various large IT organizations
(including Red Hat), Kubernetes has long since become the de facto standard for
container orchestration.

Architecture
Abstracting away the underlying infrastructure, Kubernetes acts as a Software
Defined Datacenter for containerized workloads. By providing a series of tightly
coupled technology solutions, Kubernetes enables workloads to dynamically scale
in a standardized way across various linux systems. Various distributions of
Kubernetes have been created including Amazon EKS, Google GKE, Azure AKS, Red
Hat OpenShift, SUSE Rancher and more; however, the baseline functionality, system
constructs and API definitions have been standardized to create a consistent
experience regardless of the selected distribution. The baseline functionality of
Kubernetes includes (but is not limited to) the following:

● Container Workload Scheduling & Recovery
● Configuration State Management
● Remote Management API Interface
● User Authentication/Authorization
● Security Policy Management
● Software Defined Networking
● Standardized Storage Support
● Universal Plug-N-Play Support for Various Infrastructure Providers

The variations between distributions mostly affect the platform installation, upgrade,
management experience and pre bundled add-on integrations frequently installed
post deployment. These pre bundled add-ons vary between distributions but
include solutions for functionality such as persistent storage, monitoring, service
discovery, log aggregation, ingress networking, and more. These variations are
similar to that of various distributions of Linux where the underlying kernel and
baseline functions are the same, but the management experience can somewhat
differ.

Concepts & Terms
Kubernetes has various standardized object constructs & terms, many of which go
beyond the scope of this introduction. However, a brief understanding of a subset of
these terms is essential to understanding how Kubernetes orchestrates workloads.

Nodes
Nodes refer to any host operating system instance (whether virtual or physical)
included in the Kubernetes cluster capable of running a containerized workload. By
default there are two types of Kubernetes Nodes included in every cluster which are
responsible for different tasks (with more custom types being optional).

CONTROL PLANE NODES

Control Plane (formly “Master”) nodes are responsible for performing scheduling
operations, maintaining configuration state (via Etcd), authenticating/authorizing
operations and hosting the remote management API interface. These nodes are

explicitly blocked by default from running user-defined workloads. As a standard
operating practice, each cluster is normally deployed with 3 running instances of
Control Plane Nodes (minimum) to ensure high-availability and reliability of its
hosted components should a node failure occur.

All component services provided by Kubernetes run as a containerized
linux process. In the event a specific Kubernetes provided function (i.e.
etcd - the configuration state management software) on a local node
ends unexpectedly, the given containerized process will automatically
be redeployed by the scheduler. However, there are some underlying
linux subsystems that these container workloads rely on (i.e. kubelet,
podman, etc) which cannot be restored through the scheduler.

COMPUTE / WORKER NODES

Compute Nodes are all nodes existing within a cluster which have the distinct
purpose of running user-defined workloads. These nodes can vary in memory/cpu
footprint and can be configured to define unique attributes (ex. host information)
about a given instance to ensure specific workloads are deployed where they can
run successfully.

INFRASTRUCTURE NODES (OPTIONAL)
Infrastructure Nodes (originally coined by Red Hat) are optional but recommended
specialized Compute Nodes which run targeted shared service workloads.
Traditionally these nodes are designed to run services such as Ingress Routers, Log
Monitoring, Storage, and more such that they are further isolated (by node) from
user-defined worloads. This provides an additional layer of stability and security by
ensuring there is no potential process leakage (i.e. memory and cpu usage) between
a specific user-defined workload and those required to keep an entire cluster fully
operational.

Pods
Pods are the smallest object construct that exists in Kubernetes. Traditionally, pods
refer to a single containerized process running on a specified node in a Kubernetes
cluster. However, instances also exist where multiple containerized processes run
inside the same individual pod. The rationale for running multiple containers in the
same pod is only specifically used in instances where two container workloads
MUST run on the exact same node at all times. An example of this would be if every
instance of a containerized workload required that a web proxy run on the same

host as the workload itself. In all other instances, a pod should be equivalent to one
running container instance.

Deployments
Deployments are standardized Kubernetes constructs which outline the desired
state of a user-defined workload. Deployment configurations provide a variety of
options including the associated containerized images to deploy, references to
backend persistent storage, number of replicas to run, network port access
requirements, and more.

Example Deployment Configuration

vi deployment-ex.yml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx

spec:
replicas: 3
selector:
matchLabels:
app: nginx

template:
metadata:
labels:
app: nginx

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
name: http-web-svc

kubectl -f deployment-ex.yml
kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 3 18s

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-75675f5897-7ci7o 1/1 Running 0 18s
nginx-deployment-75675f5897-kzszj 1/1 Running 0 18s
nginx-deployment-75675f5897-qqcnn 1/1 Running 0 18s

All deployments are initially network isolated to the internal
Kubernetes cluster software-defined network. Each Pod is provided its
own internal individual IP address. The complexity of network isolation
between various workloads greatly depends on the network policy
configuration of the associated cluster and the underlying network
provider selected (i.e. Flannel, Calico, OpenShiftSDN, etc).

ReplicaSets
ReplicatSets are a Kubernetes construct which represents the current running
instance count of a given series of pods and the desired number that should be
running. If at any point, the number of instances running varies from the desired
count, ReplicaSets are responsible for correcting this by either increasing or
decreasing the number of pods actively scheduled.

Command or Code Block description

kubectl get replicaset
NAME DESIRED CURRENT READY AGE
nginx-deployment-75675f5897 3 3 3 18s

Services
Services are responsible for providing a means to expose a series of pods as an
internal DNS name, IP address and port number which can be addressed globally
within a cluster. The set of pods targeted by a Service is usually determined by a
selector. This selector looks for pods with a particular label (Ex. “app: nginx” was
used previously in the example above) and designates traffic to these downstream
pods accordingly. Once deployed, a Service will proxy traffic from itself to one of the
various backend selected pods. This is especially useful as pods will receive new IP
addresses every time they are recreated and the Service endpoint will automatically
and transparently be aware of all these network changes in real-time.

Example Service Configuration

vi service-example.yml

apiVersion: v1
kind: Service
metadata:
name: nginx-service
spec:

selector:
app: nginx

ports:
- name: name-of-service-port
protocol: TCP
port: 80
targetPort: http-web-svc

kubectl -f service-example.yml

The behavior of traffic distribution for a Service to its downstream
pods vary by the configuration of the underlying kube-proxy itself. For
more information on which configuration to use and how configuration
changes can be made to the global kube-proxy, please review the
following:

https://kubernetes.io/docs/concepts/services-networking/service/
#configuration

https://kubernetes.io/docs/concepts/services-networking/service/#configuration
https://kubernetes.io/docs/concepts/services-networking/service/#configuration

Containerized Workload Scheduling
Kubernetes is a Software Defined Datacenter for containerized workloads providing
a pool of shared compute resources for all deployed workloads. Many configurable
parameters exist which can impact how/where workloads get scheduled as well as
actions that trigger deployment. As such it is important to understand the basic
mechanics of how Kubernetes allocates & schedules deployments to ensure
workloads are designed in a resilient and organized manner.

Kubernetes Scheduling Basics
All deployments running in Kubernetes (including both user-defined and those
provided) are orchestrated by the built-in scheduling system. The scheduler
watches for new pod creation requests that have not been assigned a node. The
scheduler then determines the best fit node for that pod to run on based on the
pods individual different requirements. Nodes that meet the minimum scheduling
requirements for a pod are considered “feasible” nodes which are scored against a
set of predefined functions. Some of the factors taken into consideration include
collective resource requirements, hardware / software / policy constraints, affinity /
anti-affinity specifications, persistent storage availability, etc. If none of the nodes are
considered suitable, the pod remains unscheduled until adequate placement is
determined.

The following topic areas cover some of the most common considerations used
during workload scheduling. Understanding these optional configuration settings
aims to provide a greater deal of context for considerations when considering how
workloads should be designed and deployed.

The topic areas presented are not an exhaustive list for all the optional
scheduling considerations but are the most commonly used and core
concepts leveraged.

Taints & Tolerations
Taints are properties placed on a node configuration to specify rules which will
prevent a particular workload from being schedulable to the associated system.
The purpose of this mechanism is great node segments which should only be for
running a specific type of workload targeted for the given system.

Example tainting a given node

kubectl taint nodes node1 key1=value1:NoSchedule

The above reference places a taint on node node1. The taint has a key of key1, a
value of value1, and taint effect NoSchedule. This means that no pod will be able to
schedule onto node1 unless it has a toleration rule overriding this default behavior.

Example Toleration on Pod Definition

vi pod-example.yml

apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
env: test

spec:
containers:
- name: nginx
image: nginx
imagePullPolicy: IfNotPresent
tolerations:
- key: "key1"
operator: "Exists"
effect: "NoSchedule"

Resource Requests & Limits
Unlike virtual machines, by default containerized workloads do not include any
resource constraints to maintain the capacity necessary to keep a workload
operational. Additionally, these workloads do not define by default any limitations
regarding the quantity of resources which should not be exceeded to protect other
workloads running in the same environment. As such, it is important that all
workloads include these parameters when possible. All additional workloads which
cannot have their resources parameterized in this way should be isolated from other
workloads by targeting specific nodes designated for this type of risk. These
settings will be taken into account during scheduling to ensure adequate system
resources are available on the target node.

Example Requests & Limits Configuration

vi pod-example.yml

apiVersion: v1
kind: Pod
metadata:
name: frontend
spec:

containers:
- name: app
image: images.my-company.example/app:v4
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"

- name: log-aggregator
image: images.my-company.example/log-aggregator:v6
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"

It is important to note that limits and requests will help prevent issues
with system resources being overcommitted or consumed on a target
node. However, depending on the nature and language of the
underlying containerized process it is still possible for memory leaks
to still occur which can affect other workloads running on the same
system.

Affinity & Anti-Affinity Constraints
Unlike taints which prevent workloads from running on a specified host, Node
Affinity is a property that informs a workload to prefer (or hard require) that it be
scheduled on a predefined set of nodes. Rules can be defined as soft or hard to
inform the scheduler of the degree of the requirement including the weight of the
given rule (versus other rules). These rules allow for a great deal of flexibility
including which systems to target based on Node information or even which Nodes
to target based on other concurrent workloads running on the given system; This
provides users with the ability to define rules for which Pods can be co-located on a
target node.

Example Affinity Rules Configuration

vi pod-example.yml

apiVersion: v1

kind: Pod
metadata:
name: with-node-affinity
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/os
operator: In
values:
- linux

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: another-node-label-key
operator: In
values:
- another-node-label-value

containers:
- name: with-node-affinity
image: k8s.gcr.io/pause:2.0

Affinity rules are not the only method for targeting a selected system.
The most simple and basic method for targeting a specific system (as a
hard requirement) is using the concept of node selectors which include
the ability to target systems based on optional parameters (ex. if the
target node is running on SSDs). For more information on node
selectors, please review the following:

https://kubernetes.io/docs/tasks/configure-pod-container/assign-po
ds-nodes/#create-a-pod-that-gets-scheduled-to-your-chosen-node

In addition to Affinity rules, Kubernetes provides the concept of Inter-Pod Affinity &
Anti-Affinity. These rules take the form "this Pod should (or, in the case of anti-affinity,
should not) run in an X environment if X is already running one or more Pods that
meet rule Y. The uniqueness of these rules is that X environment can be any
topology domain including a specific node, rack, cloud provider availability zone or
region.

Example Anti-Affinity Rules Configuration

vi pod-example.yml

apiVersion: v1
kind: Pod
metadata:
name: with-pod-affinity
spec:
affinity:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S1

topologyKey: topology.kubernetes.io/zone
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2

topologyKey: topology.kubernetes.io/zone
containers:
- name: with-pod-affinity
image: k8s.gcr.io/pause:2.0

Without these rules, it’s possible that for a given user-defined workload, all pods (or
at least a subset) will potentially end up running on one individual node rather than
being distributed across various nodes. This can be troublesome & increase
downtime during node update/failure workloads since multiple instances of a
user-defined workload will be taken offline at the same time.

The number and description for all configuration options possible for
Affinity & Anti-Affinity rules goes well beyond the scope of this
document. For more information, please review the following:

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-po
d-node/#affinity-and-anti-affinity

Liveliness & Readiness Probes
Definable in a pod definition, once deployed, liveness and readiness probes are
checked by the local running nodes kubelet process to ensure the pod is running
and ready to accept traffic. By default, once all of the containers (within a given pod)
main process is fully running, the pod is considered functional and will start
accepting traffic. However, in many instances a process could be running and
deadlocked or malfunctioning. Therefore it is important to define these checks such
that redeployment of containerized services can operate as expected should an
issue occur.

Example Liveliness & Readiness Probe Configuration

vi deployment-example.yml

…

livenessProbe:
httpGet:
path: /healthz
port: liveness-port

readinessProbe:
exec:
command:
- cat
- /tmp/healthy
initialDelaySeconds: 5
periodSeconds: 5

For more information regarding how to configure probes and the
purpose of each probe individually, please refer to the following:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes/

Workload Lifecycle & Redeployments
Many instances exist where workloads actively deployed will change. If a livelines
probe fails, a containerized workload will be considered unhealthy. At this point, the
running pod will be terminated and a new pod will be scheduled to replace the
current instance. This new pod will go through the same scheduling process as a
new workload which means the instance will likely be deployed to a different node
in the cluster.

Regardless of where the new instance is deployed, the new pod will be provisioned
with a new IP address. This happens transparently and is automatically orchestrated
behind any defined service object associated with the given deployment. This same
behavior will automatically occur should any node go offline whether due to a
restart, failure or update event.

Furthermore, pod autoscaling exists which can cause the number of pods to
increase/decrease based on various metrics (i.e. mem, cpu, etc). It is important to

understand that these changes can occur theoretically at any time to ensure
deployments are designed to operate in this type of environment.

Workloads on Kubernetes vs Traditional VMs
Kubernetes deployments have very distinct behavior characteristics which need to
be considered during software development and deployment alike. Unlike
traditional virtual machine workloads which are long-lived and traditionally
point-solution specific, Kubernetes deployments are subject to the following:

1. Shared host operating system resources (i.e. Memory, CPU, Filesystem
Resources)

2. Shared cluster resources (i.e. Persistent storage, IP allocation, cluster-wide
mem/cpu, etc)

3. Frequent workload horizontal scaling events
4. Frequent node horizontal scaling events
5. Frequent changes to IP addresses
6. Frequent process reload / restart events
7. Ephemeral-based by default (including system logging and local storage)

Due to these variance in characteristics, user-defined workloads normally require
partial or complete redevelopment to functionally and efficiently operate within a
Kubernetes cluster.

Case Example: Web Applications deployed on VMs vs Kubernetes
Many organizations have the impression that deploying a workload into Kubernetes
without any changes will automatically increase their ability to scale to meet the
demand of their customers. Though this is possible, the method of scaling,
deploying and orchestrating workloads is so vastly different from traditional
environments that frequently Kubernetes will bring to the surface existing issues
arising from software development patterns that may have remained unknown
previously.

Like many customer instances, a 10 year old web application and series of backend
web services actively deployed in JBoss EAP 7.2 were set to be migrated to
Kubernetes. These various components had gone through various iterations over
the years but the overall architecture remained the same. The front-end application
required the usage of sticky sessions from a front-end load balancer to not interrupt
user connections and many of the backend services required stateful data sharing.

Without making any changes to the underlying application and backend services,
migration began. Each component (i.e. front end application, backend services,
messaging brokers, databases, etc) was converted into individual Kubernetes
deployments with their own series of pods. Immediate challenges were noticed as
user traffic would rotate to different deployed pods in the environment and no
shared caching mechanism was being leveraged. This led to inconsistent behavior
(frequent request retries and re-logins required) when user requests were attempted
against the frontend application. Furthermore, when an instance of a pod died or
additional pods were added, transactional information was frequently lost.

This additionally became problematic with backend SQL databases when
deployment changes occurred as these systems were never designed to have the
data remain consistent when frequent environment changes occurred. As such, as
scaling events occurred rapidly, data was frequently lost due to synchronization
challenges.

Eventually the entire architecture was rebuilt on stateless microservices.
Additionally, front-end shared caching mechanisms were implemented for
authentication purposes and the databases were swapped for systems built for the
ground up to run in Kubernetes (i.e. CockroachDB). A Kubernetes-based persistent
storage solution (i.e. Portworx) was added to the environment and a backup solution
(i.e. Kasten K10) was implemented to ensure workloads could be safely redeployed
in the event of a total cluster failure. This is just one example of why it is crucial that
the technology selected and application design be considered prior to beginning
any migration efforts to this style of environment.

Good Fit vs Bad Fit Use Cases
Various types of user-defined workloads can be deployed within Kubernetes.
However, as we have seen in our previous examples, it is important to understand
what is a good fit, bad fit and where design considerations need to be made. The
types of workloads that are traditionally a good fit include:

● Stateless Web Application
● Web Applications with Distributed Caching Mechanisms
● Stateless Web Services
● Non-relational databases
● Backend Processing Jobs
● Specialized Messaging Brokers / Queues (i.e. KubeMQ)

In comparison, various workloads types exist which need additional considerations
prior to migrating to Kubernetes. The workload types include:

● Stateful Web Applications
● SQL Databases
● Traditional Message Brokers / Queues
● Anything requiring persistent storage

Truly anything requiring persistent storage needs to be thoroughly tested and
evaluated prior to being considered production-ready in Kubernetes. Unlike a
traditional hosting environment where storage usage is relatively static and relative
to the running host, Kubernetes workloads scale and shift between hosts frequently.
This means the underlying storage provider selected must be well understood to
ensure that it can seamlessly migrate from one node to another instantaneously and
that it is capable of real-time replication to ensure data consistency across all
deployment instances.

Additionally, design considerations must be made considering how well these more
traditional solutions function during scaling and deployment change events. If for
example a SQL instance has a sudden outage or scale event occurs, how is data
integrity guaranteed and does the data remain consistent across instances?
Furthermore, in the event an entire cluster outage occurs, how will the workload be
redeployed to a new environment? During these types of windows, will any data
loss occur that is acceptable to the business?

Building Applications to Survive Chaos
Since Kubernetes workloads are subject to scaling events, node updates,
networking changes and more, the lifecycle of a given containerized workload is
usually short-lived lasting anywhere from minutes to hours. Additionally, despite
system isolation, due to the unique nature of how containerized workloads are
orchestrated, these shared resources can become overcommitted and potentially
impact the stability of other workloads running on the same nodes.

For example, if workloads are deployed without the usage of requests/limits or a
given workload has a major memory leak, there is a potential that other workloads
running on the same system could run out of available resources and become
unresponsive. As such, it is important that applications and services deployed on
Kubernetes be designed from the ground up to be resilient to frequent system
changes.

Cross Team Collaboration Needs
Because of the complexity of Kubernetes and its various capabilities, using
Kubernetes effectively at scale requires a clear line of communication between
various teams and a great deal of system governance through automation to reduce
the potential for human error when running disparate workloads in production.
Disappointingly, there is no one-size-fits-all approach to effectively implementing a
governance strategy as the designed methodology will be greatly impacted by a
number of factors including:

1. Cultural / Organization Standards & Maturity
2. Workloads Variations (i.e. Data Science/Machine Learning, Databases, Web

Applications, Web Services, etc)
3. Underlying Infrastructure Features (Node Autoscalers, Availability Zones, etc)
4. Persistent Storage Requirements
5. Security Requirements
6. Service Level Agreements
7. Available Automation Solutions

Case Example: Automated Pipeline Took Multiple Nodes Offline
When moving to Kubernetes, many organizations not only migrate old workloads
without first optimizing their design but continue to operate in very siloed working
groups where Development and Operations are completely separated. However,
operating in a Kubernetes environment without a clear governance strategy and
well-defined communication patterns can often result in catastrophe.

Frequently, developers are given access to Kubernetes environments to
administrate workloads they have built and maintained. On the surface, this may not
seem like an issue but because of the way Kubernetes orchestrates deployments, it
is possible that systems can become unstable when proper operating procedures
aren’t followed.

One situation that frequently comes up is around the usage of CICD as it relates to
Kubernetes. In most organizations, the CICD solution (ex. Jenkins) is maintained by
Operations where the pipeline generated is built and maintained by Development
teams. In a particular instance, an organization had a Kubernetes cluster running in
AWS with Jenkins contributing CICD jobs to the environment. The Development
team created a pipeline which was responsible for deploying a workload, running a
series of integration tests and then cleaning up the workload when completed.
Unfortunately, this pipeline took numerous nodes in a given cluster offline causing
the cluster to be unstable.

The pipeline began by creating a temporary NFS instance, deploying the workload
to be tested, mounting the storage and then running the integration test. The
problem in this situation was the clean up job which deleted the temporary NFS
instance prior to deleting the workload. Since Kubernetes nodes are linux instances,
when the NFS server got removed, the nodes running the pipeline’s application
workload had their file systems locked-up in perpetuity waiting for the NFS share to
reconnect. The only way to fix the situation was to either login in as root on the host
and forcibly remove the mount or restart the nodes.

The worst problem in this entire scenario, is it took weeks to debug the issue
because the Operations team was unaware this pipeline job was running in the first
place to make the correlation between the job and the environment instability. This
created a chaotic situation which crippled workloads at seemingly random times.

Risks and Responsibilities of Team Members
Regardless, a Kubernetes strategy should be derived from the perspective that the
platform operates as a Software Defined Datacenter. Like all datacenters, in the
event a system failure or major security events occurs, there is a large risk that all
data and services deployed within the Kubernetes cluster will be lost (especially
when persistent storage is a concern). As such, the organizational usage and
governance strategy around Kubernetes should have a well thought and designed
plan to ensure system-wide & individual workload stability alike. Additionally, a well
defined security posture and disaster recovery plan for individual workloads is
critical.

Considering individual team responsibilities, user-defined workloads are co-located
and scheduled amongst a series of shared cluster resources. It is crucial that limits
and requests exist on all workloads and that affinity/anti-affinity rules are in place to
ensure workloads operate in true HA at all times. This is frequently enforced by
ensuring end-users do not have direct access to Production or Staging clusters
beyond read access and that configuration state of workloads is enforced through
the usage of Continuous Delivery solutions (i.e. ArgoCD, Fleet, etc) via Service
Accounts. These Continuous Delivery jobs should include lint testing rules for the
required safety parameters and a change review board should oversee every code
commit to a release branch before it is accepted and deployed to an environment.
Additionally, identical Staging environments should exist for testing purposes to not
only test the functionality of the user-defined workload but to further understand
the impact of these workloads against other workloads running within the same
cluster.

Lower-end environments (i.e. Dev/Test environments) can potentially have more
flexibility to their usage and governance depending on the organization needs.
However, it is important that shared lower environments maintain operational
readiness to not interrupt development efforts. As such, it is frequently
recommended that users are provisioned limited access to segmented Kubernetes
namespaces and that workloads are isolated enough from other end-users to
prevent memory leak and thread usage issues from causing system wide stability
problems.

About Shadow-Soft

Shadow-Soft is an award-winning Kubernetes systems integrator, specializing in
helping companies simplify and optimize their IT environments. With a team of
experienced consultants and proprietary modernization frameworks, Shadow-Soft is
the partner of choice for manufacturing, logistics, retail, and finance companies
looking to leverage their infrastructure and applications to Make Optimal Possible©.

Visit shadow-soft.com to learn more about what we do and how we help clients.

https://shadow-soft.com

