


Here’s the challenge…
Kubernetes can seem like a journey into the unknown. For most organizations,
Kubernetes requires taking paths not yet charted. This involves risk. But it
doesn’t need to.

Kubernetes is simply a Software Defined Datacenter for Containerized
workloads. By providing a series of tightly coupled technology solutions,
Kubernetes enables workloads to dynamically scale in a standardized way
across various linux systems.

Fortunately, there is a clear path forward to securing your Kubernetes
environment. The first step involves understanding core Kubernetes
functionality. Next, you’ll need a framework that we call the “4 C’s” to think
through your security considerations. Then, you’ll need to build a
comprehensive series of maps in a Kubernetes Health Assessment which will
address eight (8) specific security issues.

The good news is there are plenty of tools available to lock down your
infrastructure. The better news is that it only takes a few weeks of concentrated
effort to build a scalable secure environment. The best news is there is a
time-tested, proven approach to simplify the complexity of Kubernetes.

Like with most endeavors, preparation is the key to success. Don’t skip this step
on your Kubernetes journey. Any successful expedition requires good
preparation in order to avert disaster down the road.

So let’s get started...



Kubernetes 101
The secret to Kubernetes speed, efficiency, and compute power lies in
standardizing baseline functionality, system constructs, and API definitions to
create a consistent experience regardless of your distribution selection.

Baseline functionality includes:

● Container Workload Scheduling & Recovery
● Configuration State Management
● Remote Management API Interface
● User Authentication/Authorization
● Security Policy Management
● Software Defined Networking
● Standardized Storage Support
● Universal Plug-N-Play Support for Various Infrastructure Providers

Here is a visual representation of Kubernetes components to help you
understand how each component is related and integrated with another.

To ensure workloads (and the environment itself) are designed in a resilient and
secure manner, it is important to understand the basic mechanics of how
Kubernetes allocates & schedules deployments. This is particularly important
because there are many configurable parameters that impact how and where
workloads are scheduled and deployed.

Unlike traditional virtual machine workloads which are long-lived and often
point-solution specific, Kubernetes workloads have distinct characteristics.
These characteristics will shape your security approach and posture.



Kubernetes Unique Characteristics

Shared host OS resources (i.e., Memory, CPU, Filesystem Resources)
Shared Cluster resources (i.e., Storage, IP Allocation, Memory, CPU)
Frequent workload horizontal scaling events
Frequent node horizontal scaling events
Frequent changes to IP addresses
Frequent process reload / restart events
Ephemeral by default (including system logging and local storage)

To illustrate the dynamic nature of Kubernetes, consider what happens when a
deployment health check fails. First, the current deployment will be terminated.
Then, a new deployment instance will be created. Next, the new deployment
will go through the same scheduling process as if it never previously ran.

The new instance is usually deployed on a new node. It will certainly be
provisioned with a new IP address. The data (if any) generated from the original
deployment instance is lost. This same behavior automatically occurs any time
a node goes offline due to a restart, failure, or update event.

4C’s Framework
As you can imagine, the security implications of an environment that self-heals,
auto-scales, auto-replicates, and auto-deploys based on the resources
available at the time requires a new way of thinking. Most security policies never
contemplated ephemeral data or decentralized computing on the edge and yet
these are the requirements that security must meet today.

To help migrate to a secure Kubernetes environment, a framework is needed.
This framework can be used to gain consensus on what needs attention and
provides a rationale for funding. Since most Kubernetes environments leverage
the scalability and efficiency of the cloud, a “4 C’s” framework makes sense for
most organizations to use.

Simply put, you can think about Kubernetes security in four layers: Cloud,
Clusters, Containers, and Code.

Each layer of the Cloud Native security model builds upon the next outermost
layer. The code layer benefits from strong base (Cloud, Cluster, Container)



security layers. You cannot safeguard against poor security standards in the
base layers by addressing security at the code level.

Cloud
The Cloud (or co-located servers, or the corporate datacenter) is the trusted
computing base of a Kubernetes Cluster. If the Cloud layer is vulnerable (or
configured in a vulnerable way), then there is no guarantee that the
components built on top of this base are secure. Each cloud provider makes
recommendations for running workloads securely in their environment.

While each cloud provider has unique security provisions, here are some
general guidelines for securing your infrastructure:

Security Concern Recommendation

Network access to
API Server
(Control Plane)

All access to the Kubernetes control plane is not
allowed publicly on the internet and is controlled by
network access control lists restricted to the set of
IP addresses needed to administer the Cluster.

Network access to
Nodes

Configure nodes to only accept connections from
the control plane on the specified ports, and accept
connections for services in Kubernetes of type
NodePort and LoadBalancer. Do not expose these
nodes on the public internet..

Kubernetes access to
Cloud Provider API

Each cloud provider needs to grant a different set of
permissions to the Kubernetes control plane and
nodes. It is best to provide the Cluster with cloud
provider access that follows the principle of least



privilege for the resources it needs to administer.

Access to etcd Access to etcd (the datastore of Kubernetes) should
be limited to the control plane only. Depending on
your configuration, you should attempt to use etcd
over TLS.

etcd Encryption Wherever possible it's a good practice to encrypt all
storage at rest, and since etcd holds the state of the
entire Cluster (including Secrets), its disk should
especially be encrypted at rest.

Cluster
There are two areas of concern for securing Kubernetes Clusters:

● Securing the Cluster components that are configurable
● Securing the applications which run in the Cluster

Depending on the attack surface of your application, you may want to focus on
specific aspects of security. For example, if you are running a service (Service A)
that is critical in a chain of resources and a separate workload (Service B) which
is vulnerable to a resource exhaustion attack, then the risk of compromising
Service A is high if you don’t limit the resources of Service B.

Here are the seven Cluster security concerns that you must fully address:

1. RBAC Authorization (Access to the Kubernetes API)
2. Authentication
3. Application Secrets Management (etcd encryption and at rest)
4. Ensuring pods meet defined Pod Security Standards
5. Quality of Service and Cluster Resource Management
6. Network Policies
7. TLS for Kubernetes Ingress

Unfortunately, Clusters often break. The optimal way to address these seven
Cluster concerns requires a comprehensive review of your existing
environment, policies, and governance procedures. Only then can you ensure
your Kubernetes architecture will scale securely and your organization is
equipped with the tools they need to rapidly spin up applications at the speed
of business.



Containers

In simple terms, Containers decouple applications from underlying host
infrastructure and this standardization means you get the same behavior
wherever you run it. This is why your Kubernetes environment self-heals,
auto-scales, auto-replicates, and auto-deploys.

Container images are ready-to-run software packages, containing everything
needed to run an application: the Code and any runtime it requires, application
and system libraries, and default values for any essential settings.

This self-sufficiency allows Containers to be stateless and immutable; you
should not change the Code of a Container that is already running. If you have a
containerized application and want to make changes, the correct process is to
build a new image that includes the change, then recreate the Container to start
from the updated image.

To optimize security, you should follow these recommendations:

Security Concern Recommendation

Container Vulnerability
Scanning and OS
Dependency Security

As part of a Container image build step, you
should scan your Containers for known
vulnerabilities.

Image Signing and
Enforcement

Sign Container images to maintain a system
of trust for the content of your Containers.

Disallow privileged users When constructing Containers, consult your
documentation for how to create users inside
of the Containers that have the least level of
operating system privilege necessary in order
to carry out the goal of the Container.

Use Container runtime
with stronger isolation

Select Container runtime classes that provide
stronger isolation.

Code
Finally, we reach the area where you have the most control: Application Code. It
is one of the primary attack surfaces and you probably have several tools,
policies, and procedures in place. You will want to keep many of these existing
security guidelines and only introduce a few new best practices that
Kubernetes demands.

Here are some specific recommendations to protect your application code:



Security Concern Recommendation

Access over TLS only If your code communicates by TCP, perform a
TLS handshake with the client ahead of time.
Encrypt everything in transit and network
traffic between services using mutual TLS
authentication (mTLS) which performs a two
sided verification of communication between
two certificate holding services.

Limiting port ranges of
communication

Wherever possible, only expose the ports on
your service that are absolutely essential for
communication or metric gathering.

3rd Party Dependency
Security

Routinely scan your application's third party
libraries for known security vulnerabilities.
Each programming language has a tool to
perform this check automatically.

Static Code Analysis Most languages provide a way for a snippet of
code to be analyzed for unsafe coding
practices. Use automated tooling that can
scan Codebases for common security errors.

Dynamic probing attacks Use automated tools that you can run against
your service to try some of the well known
service attacks. These include SQL injection,
CSRF, and XSS.

Kubernetes Health Assessment
Unlike other platforms, Kubernetes provides its users the full functionality of a
Software Defined Datacenter with high levels of automation. The best way to
address these risks is to conduct a comprehensive Health Assessment on eight
dimensions:

1. Architecture
2. Applications
3. Scalability
4. Storage & Backup
5. CI/CD
6. Disaster Recovery
7. Monitoring & Health Checks
8. Security

A good Health Assessment will leverage the power of maps. Maps will help you
review what’s happening now and decide what you need to do differently. They
can also shape your path around, over, or through the security hazards identified
in your 4 C’s Framework: Cloud, Cluster, Container, Code.



More importantly, the maps will help you plot on a Risk x Effort Scorecard how
to systematically strip out risk in a series of 90-Day Plans that produce a
12-Month Roadmap.

What’s Next?
A Health Assessment will take you and your team approximately two weeks to
complete. To download a step-by-step Health Assessment Guide, go to
www.Shadow-Soft.com. To take a free course on Kubernetes 101 or to learn how
to conduct your own Kubernetes Health Assessment with Enterprise Architect
office hours at no charge, go to www.academy.Shadow-Soft.com.

For other inquiries or support, please feel free to contact Nick Marcarelli, VP of
Engineering, nick@shadow-soft.com. Nick can help you think through your
specific issues and use case.

We’re here to Make Optimal Possible.©

http://www.shadow-soft.com
http://www.academy.shadow-soft.com
mailto:nick@shadow-soft.com

